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SUMMARY

The minimization of wave dr~ for thin aerodynamic shapes carrying
no ldft is studied for conditions under which either base area or volume
is specified. When volume alone is given, the analysis is Limited to
shapes with straight trail.hg edges normal to the stream direction. The
problem of minimization is reduced to one of findhg a two-dimensional
harmonic function with known tiundary conditions.

In several examples the theory is applied to the calculation of
IDinhnmldrag. For given base area, general formulas are found that cover
as special cases qyasi-cyhdrical bodies of revolution, wings having
plan forms with fore snd aft symmetry, slender bodies, and certain classes
of yawed wings. The drag can in fact be determined from a uniMmensional
flow analysis in a duct of known shape. For given volume, minimization
of the external wave drag of a ducted body of revolution of arbitrw
radius is achieved in closed snslytic fofi.

In two cases, the determination of surface shape corresponding
the minimum drag is carried to completion.

INTRODUCTION

to

To seek conditions under which the ~iavedrag of a given wing or body
is mhimd_zed is to seek conditions for economical supersonic flight. It
is also a common experience, in the study of such probl-, to find that
a grat~to~ economy appe== to tifect the euml.ysisitself. Klmost invar-
iably, simplicity characterizes the final forms of the results in compari.
son with predictions carried out for whgs and bodies chosen with less
discrimination. In the present paper, the minimization of wave drag for
aerodynamic shapes csxrying no lift is studied. Conditions must, of
course, be fixed h order to prescribe the problem and, from a practicsl
point of view, this choice is less obvious than in studies of Mfting
configurationswhere a given weight is to be supported aerodynsmicdly.
The cases treated here ap@y the conventional.constrahts on base area
and enclosed volume to a variety of shapes. For a large class of wings
and bodies, the above-mentioned simplicity is especially apparent b the
case of given base area for, as w3Jl be shown, the general expression

.- . ..—. .-— ..._. .._ ——. _ —— —— .—— —.. .
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for ~ drag assumes the most,elementary form possible while at the
ssme time retaining the relev~t psmmeters and being ikbmnsionml.1.y
correct.

The starting petit of the present work is the eqression for drag
given~G. N. Ward (ref. 1) in his studyof thinlifttnglxxilies,that
is, wings snd bodies for ~~hich13nearized supersonic flow theory applies.
The body shape is assumed to be enclosed by a characteristic surface gen-
erated as the enveloye of both the downstre~-facing Mach cones, with
vertices on the forward edge of the body, and the upstresm-faci.ngMach
cones, with vertices on the trailing edge of the body. Wave drag (@us
vortex drag when Mft is present) is then given by a control-surface “
integral of the induced velocities over the downstresmportion of the
Mach envelope. This particular control surface has analytical advsmtages
similar to those exploited by R. T. Jones (refs. 2 and 3) in the use of
combined flow fields. Jones adopts a perturbation ~otential eqpsilto
the sum of the Potentials in forward and reverse flow. He then shows,
for exsmple, that the necessary condition for minimum wave dxag is, for
a plan form of given base ~eaj that the pressure in the combined flow
field be a constsnt over the @_an form. It follows that locally the
combined-flow~otential is a two-dimensional harmonic function. If, how-
ever, the entire analysis is committed to the use of combined flows,
details of body shape (or, in the lifting case, suxface loading) are lost.
Along the Mach envelope used by Ward the perturbation potential in forward
flow is eqti in magnitude to its value in the combined flow field. Drag
minimization then determines conditions on the control surface and for the
p’oblem of given base area the potential on the surface differs from a
harmonic function by a lmown amount. The conventional perturbation poten-
tial is retained but the detemdnation of the body shaye is still not
direct. Mathematically, one needs to invert an integral equation and the
question as to uniqueness of solution arises. The final examples in the
present pa~er will be concerned with the construction of minimum-drag
bodies of revolution from the known conditions on the control smface.
In these special cases the diversions of the intewal equations are easily
carried out.

The followbg. an+-ysis is divided into two sections. First, titegral
relations are derived that determine the drag, base area, and volmne of a
thin body in terms of induced velocities on the rear Mach envelope. Sec-
ond, variational methods are applied so as to minimize wave drag subject
to the 3mposed constraints. The perturbation potential.on the Mach enve-
lope is in this way related to a two-dimensional harmonic function
satisfying known boundary conditions.

——— — —
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Relations for Drag, Base Area, and Volume

3

It is assumed that the given body
deviates slightly from a planar or a
cylindrical reference surface with ele-
ments ~assing through the leadhg edge
of the body and extending back parallel
to tbe stream direction. As shown in
sketch (a), the body reference surface
is denoted Xo, the over-all len@h
is l,anda
system is to

C&tesian coordinate
be used with the origh .

Zi

.V
0;0,0)

ftied at the foremost point of the
.

\
body and the x axis al.hed with the 20

free-stream direction. The constant
free-stresm velocity, Mach number, ad Sketch (a)
density are Um, ~, and PM, respec-.-.
tivel.y. The pertur~ation”~elocity components u, v, w induced by the
body h the x, y, z directions are given by the gradients of the per-
turbation velocity Totential. q(x,Y,z), that is, by %(x,Y~z)j

?
(X,Y,Z),

%.(X,Y,+ Since supersonic small-disturbancetheory is assumed o apply,

tfieflow field is governed by the Mnearized

p2&-~-q3zz=

where B2 =M332-1.

Three types of reference surfaces occur

differential eqyation

o (1)

most often in practice:
first, planes which sre associated with the st&ly of wings; second, cir-
culsr cylinders which lead to the study of internal or external.flow
around qyasi-cylindrical.bodies; third, lines parallel to the stream
direction. The last case is associated with slender-tidy theory and is
merely a limiting form of the previous cases. The thickness distribution
of the wing or body is fixed by boundary conditions prescribed on the ref-
erence surface. In order to avoid difficulties concerning gaps or holes
in the W@ surface it will be assumed that unique leading aud trai13ng
edges exist and that the thictiess distribution does not vanish between
these etiremities.

In sketch (a) the characteristic surfaces enclosing the body are
indicated. The front portion, Xl, is the envelope of the Mach cones
stemming back from the leading edge of the body and the rear pmtion, X2,
is the envelope of the Mach cones facing forward from the trailing edge.
The surfaces Z1 and ZZ titersect along the space curve rl. As shown
by Ward (ref. 1), the wave drag canbe expressed in terms of an integral
over the surface X2. This follows from an application df momentum prin-
ciples to the three-tiensioncil.region bounded by Zo, Xl, and 22. The
force on the body is eqressed vectoridly in the form (see, e.g., ref. 4,
p. 222)
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where the subscript co denot s free-stream conditions, p
static pressure and density, $ is the local perturbation

and p are local
velocity vector,

ad the–surface inte~tion~ extend over the ‘tiundingsurfaces. In small:
disturbance theory the apprmdmate relations

P/Pm = 1 - %2(4%)

and

[ 1P-Pm “ -1% Umu+ * (-P~2+=+@) -

maybe used.

If COS(V,X), COS(V,Y), COS(V,Z) are the direction cosines of the
inner normal v to the enclosimg surface, drag (wave plus vortex drag)
is, to thq order of the appro-tions,

D=-%
J{ [

(v%=) + u j32u-2’v
COS(V2Y) -, Cos(v>z)1}cos(v,x)dZCos(v,x) Cos(v,x)

L2
(2)

An essential simplification of the drag formula follows if one
introduces the function X(y,z) where

x = q[f(Y,z),Y,zl

andx= f(y,z) is the equation of the characteristic surface X2. The
function X is thus the value of the perturbation potential on Z2. The
direction numbers of the normal on this surface are given by

Cos(v,x):cos(v,y):cos(v,z)= -l:fy:fz (3)

and the relation

holds. Since

the d.rsgformula

fy= + fz= = P2

Xy .V+ufy Xz.w+ufz

becomes

.— —



I?ACATM 3289 5

The latter
of Greents

Pm
=.-— J J’X@)@@+ X-&Xds

2

relation is a direct consequence
the~rem in the two-Mmensionsl

cross-plsme;V< is the Laplacian operator
(b2/bF)+ (b2/bz2) and.n is the inner nor-
mal to the boundary curves h the yz
plane. As indicated in sketch (b), the
titegration in equation (4b) extends over
the area S which is the projection of 22
on the plane x = const. Along the outer
curve Cl, which is the trace of the curve
I?l in the same plane, the function X
vanishes stice rl also lies on the Mach
cones from the leading edge. The inner
curve C2 is the trace of the cylindrical
reference surface.

z

t

(4a)

(4b)

Sketch (b)

In order to evaluate the base area external to the reference sur-
face 2., it is sufficient to ap@y over the surfaces ZO, ~1) and %
the first-order form of the inte~al eqression for continuity of mass
flow. This consemation relation is, for compressible flow,

J &(u&c+@x=o

z

and to the order of the yresent linearized analysis becomes

L(J

Pmum
J[

v Cos(v y) w Cos(v z)

1
-P=& +~co~(v’x) +~cos(v;x) cos(vY4~=o

22

where the two integrations extend, as indicated, over X. and the rear
Mach envelope 22, respectively. In linear theory the term (l/Um)(a@v),
appearing as the first integrand, is eqyal to the slope, relative to the
stream direction, of the body surface. The x-wise integration of the
first integral thus yields the difference in body ordinates at the trail-
ing and leading edges and the complete integration cam thenbe written

.-— -—–- _——____ ——___ ___ —-
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where A is the increment of area between the nose and tail of the body.
In the notation of equations (3) and (4), continuity of mass flow thus
leads to the desired relations

(%)

It remains to determine an analogous expression for the volume V
between 20 and the body itse~. The starting relation is Greents
theorem written in the form

0’ p(um+u)ti ay &

T

UTa(U-+9) m -=- 1=~
D{

x : [P(U.W.JI++(PQ’J+: (P9J
}

axayaz

x T

where T is the three-dimensional.region enclosed by the surfaces 2.,
21, slldz=. The factor within the braces, in the final term, is, however,
zero throughout the re@on for steady-state, continuous, compressible flow
conditions. To first order, the relation becomes

0’J32udxayti

T

=JrXa’a+
av 1[ )-B2U+VCOS(V>Y)+WCOS(V2Z) Cos(,,x)w

Cos(v,x) Cos(v,x)
V

If, in the first tern, the x-wise integration is ~erformed sad, in the
second term, the Mundary conditions on Z. are introduced ad an x-wise
integration by prts is carried out, one then gets

JfJ2
i

Xayaz. ua m(f,s)as - Umv+
J

f(xyfy%fz)w U

s
2 s

— —.— —
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where N = N(x,s) is.a measure of the deviation of the kody from the con-
trol surface. that is, the distance measured normal to X. between h
and the
control

body; Thus ii= N(f,s) is the deviation of the l&ly from
surface at the base. From Green’s theorem, the last term

Uu

s’

and the volume formula becomes

v=
I

fN(f,s)ds - *
J[

XV2 @

c~ ‘s

+1222

1
p(Y+z)dYdz-*

J’

x=

b
‘G?

th;
is

ds

(6)

Further simplification of equation (6) occurs if the trailing edge
of the body lies in a @ane ~erpendicular to the x axis. The first
integral in the right member then becomes 2 tties base area where 2
is body length and the term csn then be re-eqressed by means of e~-
tion (~). For trailing edges normal to the stresmj volume then becomes

v=-~
2um J[ 1

XV2 (2.f)2 + $32(y=+z2) dy dz - ~
2uaJJ

@- (2-f)2ds
x b

s %

(7)

Solution of Variational Problem

By means of the previous relations, wave drag can be minimized for
prescribed values of incremental.base area, A, and volume, V, external
to zoo Since equation (7) is to be used, results involving volume V
will be applicable only to configurationswith traiMng edges normal to
the stream direction but this restriction need not be invoked when cond3.-
tions are prescribed solely for the srea A. The formal solution of this
isoperimetric problem is achieved through the minhization of the
expression

..-. ——— .— — _—
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I =D –M+pv (8)

where D, A, and V are @v’en, respectively ~ eq!!tio~ (4b)~ (~) ~
and (7) and A,p are Lagra@gian multipliers. Let X be replaced by
x + aq(y,z) where ~(y,z) represents a vmiation that satisfies the s~e
taund~ conditions as X on Cl and C= md a is a const~t. me
necessary condition for minimization is that the expression

J{w2x+&f+L [
(2-f)2 + * p2(y2+z2)

11
ayaz+

2PJ-JQ
s

J[a
1‘%i ‘+& f+2PjJm@f)2~=o

c=

holds for all q. The following differential eqyation and boundary con-
ditions must therefore be satisfied

{
@x++f+

[ 1}
& (2-f)2 + * P2(f+z2) = o in s

mm a

i

[+ “x+ pmum 1
~f+&(~-f)2 .0 on C=

1

(9)

%=0 on cl

Equations (9) are closely analogous to conditions arising in the
~zation of wave plus vortex drag for wings having given Mft and
given center of pressure. It should be remsxked that the particular
form of the term involving (~ + Z2) in the bracketed tenm of the har-
monic differential eqpation is somewhat arbitrary and that, for exsmple,
the equation could be changed to one of the Poisson type with the term
in question appesring in the right member as a constant times the
LagraWi=titipMer ~.

For purposes of direct solution it is sometimes preferable to
introduce the function Q(y,z) in equation (9) where

Q(y,z)=x+Af+
[

& (1-f)2 + $ B2(F+Z2)
Pm% 1

(lo) -
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The equations to be solved me, then,

= o ins

‘+%w+”) ‘n ‘2

.Lf+
[

& (H)’+w%z’)
1

on Cl
@Jm J

}.

(n)

The function X thus differs from the hsrmonic function Q by an amount
given exp~citly in terms of the characteristic surface 22.

An important eqression for the wave drag can be derived from equa-
tions (9) without further knowledge of the solution. For, from eqpations
(4b) aud (9), one has

D=*
J{

@&f+& [ 1}
(z-f)’ + * p’(y’-f-z’.)dy d’ +

s

and, by comparison with eqpations (!5b)end (?),

(12)

In order to eliminate the Lagrangian multip~ersj the solutions of eqpa-
tions (9) or (n) are needed. It is of interest”to remark, however, that
comp=isons with results based upon combined-flow considerations show
that for given base area and zero volume 1 can be identified.with
pressure in the combined-flow field smd”that for given volume and zero
base area (closure) w is the pressure gradient in the
field (see ref. 2).

combined-flow

APPLICATIONS

Equations (9) or (Id.)determine the perturbation potential on the
rear Mach envelope and thus lead to the evaluation of wave drsg in eqm-
tions (4). Particular applications are studied in this section. First,
bodies with base srea prescribed along a traiUng “edgeare considered
alone. Second, more particular cases of given volume and zero base area
are treated. For given base area, it is proper to th~ of the tidy as
etiending downstream from the trailing edge along a cylindrical surface

-.. — _______ ______ . — .. . ——._
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having elements prallel to the stream direction. A semi-~,inite shape
then results. If the trailing edge is of supersonic type, all influences
downstream of this edge csm have no effect on the forward portion of the
body and, except for the base drag arising from the unknown pressure at
the trailing edge, the wave-drag calculations apply without regard to the
cyl.hlrical afterbdy.

.
The two final bodies @ven here show how, for particular exaples,

the actual surface shape can be determined from a lmowledge of the func-
tion X. Bodies of revolution are chosen for the examples since the
integra3 equations that appear in the snalysis involve a single integra-
tion. In genera3, double-integral equations will result and detemnina-
tion of surface shape becomes correspndingly more difficult, if possible
at dl.

Wings and Bodies

The constr-t on volume is
on base area alone is considered.
eqmtion (4a), drag is

D=%
J

(fly’-mz’)w

s

Eaving Given Base Area

now removed and the dependence of drag
From eqpation (10), with w = O, and

dz;-— J?’(f@#r.zflz)dy&z +

*S

A’
2pJJm= J

(fy’+fz’)dy &z

s

(13)

Green~s theorem can again be used to rewrite the first two i@egrals and
the last term is simplified by virtue of the relation fy’ + fz’ = ~’
In this msaner one gets

where, in the last term, ~
‘s -c ‘mssm (=* ‘mu=”)* ‘Omeqm-tions (lJ_),this relation reduces to

. ..— — .-
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Further reduction of equation (14) depends on a knowledge of the
explicit solution of eqmtions ‘(U.). A large and particularly interest-
ing class of wings and bodies for which the solution is hmediate is
characterizedby the condition f = const. on C=. Since x . f(y,z)
is the equation for the rear Mach envelope, the imposed condition implies
that the outer curve rl of this envelope lies in a plane normal to the
stream direction. For example, all wings-pith plsn forms having fore and
aft symmetry satisfy this requirement as do also all pinted configura-
tions with subsonic edges so long as the hose and tail vertices determine
a line parallel to the stresm direction. The solution of eqpations (l-l)
is then

Q = const.
.

and equation (14) reduces to

D..&~
4c&

(15)

By means of equations (12) and (15), A can be eliminated and drag
expressed in terms of the geometry of the body or wing. The result is

The simplicity of equation (1.6)is remarkable and examples of its
rather diverse applicability are given below. Before proceeding to these
applications, however, it should be noted that a similar result applies
to all planar wings for which the surfaces Z1 and X2 intersect ~ong
S.nypl=e parallel to the z axis. The former condition that the curve
1’1 lies in a plane normal to the stream is thus relaxed so that
x= f = m(y+ bo) on the curve Cl, where m(<f3) is the slope of the
plsne of 1’1 relative to the stresm direction. me solution of e~w-
tions (H) is

Q= ~ b+bo) in S

and it follows that

al—= ~ cos(n,y)
an %%

on Cl

. _-

- ..—. ..- —————______ .._ ———— ..__ ——————
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After substitution of these results into equation (14), one gets

D=$ (p2-m2)S (17)

In this latter case, therefore, equations (17) and (12) give

.A2
:=s(p%’) ‘ (&’.;:#)s

(18)

Ducted body of revolution with pre-
scribed end dismeters.- This problem was
first considered by Parker in reference 5.
As shown in sketch (c), a shape with minimm
external.wave drag is constructed so as to
have an initial radius R2 and a final

x radius RI. In order that the previous

~

‘w
+1+

Sketch (c)

x.

and the curve Cl is a

From equation (M)

J-J

linear theory should apply, the restriction
is made that the ratio PIR1-R21/Z should
be a small qpantity. If the origin of axes
is in the front face of the body, the fore
and rear Mach surfaces are

~(r-~) x-z = -P(r-R=)

circle of rsdius ~ where

~ = (2+BR,+P%)/2B

arag is

4(R12-R22)2n
(l$la)

Equation (19a) is of particular interest since it represents a whole
spectrum of results that extends from slender-body theory, for @Rz/Z
ma j3R’/2 small, to two-tiensional theory, for 13R1/Zand 13R2/z large.
The slender-body result leads directly to the familiar K- ogive
fo=a (ref. 6) .

(lgb)
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Elliptic plan form with sfter-

Z!QQ”- The problem of given base
area along the rear edge of an elXp-
tic wing was considered first by -

Y

I
R. T. Jones (ref. 3). The fi~e is
a semi-infinitebody with a cylin-
drical shape drawn downstream of
the rear edge of an elEpse, see “ -x

sketch (d). The eqpation of
plan form outline is assumed

the -2a—l
to be

Sketch (d)

and the enveloping Mach surfaces are determined completely by the fore
and aft Mach cones with vertices along the supersonic-edgedportion of .
the plan form, that is, the abscissas of the vertices Lie within the
region

Ix I< a2/(a2+b2~2)1’2

The curve Cl has the eqpation

Y2 =2
— = 1

[(a2+b2P2)112/13]2 + (a/f3)2

and is an elIU.psewith foci at (*b,O). Equation (16) then @e~

D—= A2

% tia(a2+b2~2)z’2
(20a)

If drag coefficient ~ is based on plan-form area, equation (20a) can
be re-eqressed as

2

)
!D=(&

4R2

[P2+(4/l@ql’2
(20b)

since the aspect ratio of the ~dng is Ai = (4b)/(fia).Perhaps the most
convenient formula for comparison follows from eqpations (19b) and (20a)
if the drag of the wing is expressed in terms of the drag of a=
ogive with the sane len@h and base area. The ratio is given by

D a 1

~’ (a=+b=~=)l/2
(a)

= [l+(flB~/4)=]1/2

..—-..—. —.——..._ .. —.. — ——-— .—.— ——.——— . . .
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The wave drag of the elli~tic -g with cylindrical af%erbody, h the
Wt as aspect ratio a~proaches zero, is equal to the drag of the K.drm%
ogive snd tierbody. For finite values of aspect ratio, the wave drag
of the flat wing is smaller than that of the body of revolution, the .. . --
initisl deviation of the ratio

Y
t

(!H-
————————–2b x— —.
———

——

l-2d-i

l-2a-l

Sketch (e)

*Y

Sketch (f)

Rromunity being proportional to (j31R)’.

Trapezoidslplan form with afterbody.-
As a third exemple, consider a trapezoidal
plan form of arbitrary taper ratio with
base area along its traiking edge fixed,
When the trefin edge is of subsonic tyye
a cylindrical af%erbody is assumed added.
As shown in sketch (e), root chord is
equal to 2a amd
tip ChOId iS 2d
and aspect ratio
in the form

A. =

R=

spm”equal to 2b. The
so that ta~er ratio ~
IR may be introduced

d/a

2b/[a(l+Ao)]

So long as the leading edge of the
wing is supersonic the characteristic
trace C= is as shown in sketch (f) and
is composed of arcs of circles and straight
Unes, the radii of the hner and outer
circles being a/P snd d/~, respectively.
The distance between the centers of the
two outer circles is 2b. Once the lead-
ing edge of the plsa form is subsonic, the
central circle of sketch (f) blankets the
other parts of the figure and Cl is the
circle of radius a/~.

The area S is the sum of elementary geometric areas ad is given

w

s
[

2a2 m 2 (1+AJ2 -
‘— z% + 2 @R-cos a + a(l-~2)

B2 1

where a, shown in the sketch, is given by

.

.

—
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(arc sin ‘(’-h)
I MR (Mo)

a=

L

From eqyations (16) smd
relative to the drag of
is

D

(19b), the
the -

minimum drag of the trapezoidal wing
ogive of equal length and base area

-=
D’K

Yr+(l+AJ [ (l+&) 2P2R2-4(1-&) 211’2-’(l-&2)UCCos
[P%%,]

when

when

‘(l-~) s @ (l+AJ

/

(22)

1
$=

2(1-XJ 2 j3A3(l+&)

Special cases of interest are:

Rectangular ~ (~ = 1)

1

:= 1 + (4WR )/Yr

Diamond wing (h. = O)— .

1

+=1+1

6)

> ‘~pm

;[(PR)2 -4]=’2 -~arc Cos+
Yr

1

=1, 13A352

-. —. .— —— -.— —.. —..
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Sketch (g) shows a @ot of D/~ against PJR for the elliptic,
rectangular, trapezoidal, and diamond plan forms. Ease area and length
of the wings are equal to these parameters for the K= ogive. For
large values of 13AR the relative drag decreases as l/plR. As the wing
plan forms become slender, drag of the elUptic and rectangular wings
approaches in the limit of vanishing ~~ the drag of the ogive. The
tapered wing, on the other hand, has a value of ihg equal to that of the
ogive for dl values of taper ratio and as~ect ratio satisf@g the
inequality 2(1-M)~plIl(l+~). This relation is satisfied so long as
the edges of the w5ng are subsonic. Changes in sweep angle of the lead-
ing snd trailing edges produce no further change in the mhimum drag of
the configuration so long as the base area is held fixed. The value ~
is the minimum drag for dl such configwations lying within the fore and
sft Mach .conesfrom the nose and tail of the wing. Except in the case of
the rectangular ylan form, the curves of D/~ have zero slope at their
peak values.

Lo
\

\

i, “\\ “\t\ 43
\ .

.9 \ ‘\ Elliptic

I \
\

“\ ,
——- 1.00 Rectangular

\I ‘8\
—— .75

\ ‘\. .
.8 I s \ \

\ \ , I———.50 Tmpezoidal
\\ \ —— .25
I\ \ “\., ‘“\.

O Diamond

.7 “,
\\ \ \

\
\\

\ ●

\
\ \\\

‘1, ‘.
\ %

.6 \. -..

\\ \\
x.

\
\\

\. ‘\..
\ \\\

.
% \ ‘-m

1+

.5
\.
\\ \ -..
\\ \.

\\
\ ‘“\..

‘8,
.4 . =..

‘\ \\\
1.

. -\--
\. k

~.. ----
.3 x ‘\

-. x
\-

-..+ .\.
+

-.
. -\_ -+.

.2 --% ------- --, _ -.----- ------- ----- ------
.1

0
0 .5 LO 1-5 20 25 3.0 3.5 4.0 4.5 50 5.5 Co

—

Sketch (g)



NJ
NACA TN 3289

It should be noted that smong the
here the K6rm6n ogive has the greatest

17

optimum configurations considered .
value of wave drag for given

length, base sea, and.Mach nwber. The gener~ty of t.~s observation
is apparent frcm eqpation (16). Let the family of wings include all plan
forms for which the curve 1’1 lies in a plane normal to the stream direc-
tion; the maxhum value of minimum drag occurs when S isamhimum and
this occurs when the trace C2 is the circular curve associated with the
K* ogive of equal length and base area.

Yawed elliptic plan form with
afterbodv.- For tiven base area, the
drag of “mellipiic plan form a{
angle of yaw * can be calculated
from equation (M). In order to
,Justify this statement it is suffi-
cient to show that the characteristic
curve 1’1 lies in the plane
x= f=m(y+bo). The trace of rl
in a yz plane is, in fact, another
ellipse and the dimensional relation-
ships between the plan form and the
trace are as shown h sketch (h). It
is convenient in the derivation of
these results to proceed inversely
and to determine the p= form as an
envelope of curves given by the inter-
sections h the xy p-e of fore snd
re= facing cones with vertices on I’l.
Since the streamwise position of the
origin’is of no direct simficsnce,
the space curve rl may be assumed
given by

The Mach cones with vertices at the

Po~t (XIy yl, z1) on rl are

(x-x.)=’= 132[(Y-Y1)2+ (z’-zd21 (26)

T
1.

1

T
2C

1

Y

Y

~ze~

Sketch (h)

where

xl = W1 )
c2 (132-y=2)Z=2 –

B2

— ..——— ..— .— ...———.——— ~— ---—__— —__ —-— .—
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The pammetric eqtition of the
equation (26) with z = O and
that is, the relations

NACATN 3289

enveloye in the yz plane is given by “
u

the yl derivative of the same expression,

B2[(X-qTl)2 - f32(y-y=)2] = 132C2(B2-y=2)

[B*-p2(B=-C=) ]Y= = (=-P=Y)B=

The envelope is, therefore,

(#43=)x= : 2ni#xy+ (&B2W32C2)fi = C2[j32(B2-@) - m%=] (27)

Equation (27) represents an ellipse so long as
satisfies the inequali@

% < ~2(B2-C2)/B2

the initially chosen m

(28)

The elliptical plan form is fixed by its major and minor axes and
angle of yaw. The relationship between the plan form and trace curve is
more conveniently carried out, however, in terms of the three qwtities
t, b, w where z is streamwise length of the plan form, 2b its width,
andx= Wy is the line passtig through the points on the plan form
where y = *b.

Elementary calculations performed with eqpation (27) yield the
following relations

1/2 =

b=

(B2nF+~=C2)112 (29a)

(B2-C2) ‘2 (29b)

~2

B2-C2 (29c)

-~2

(B2-fJ2) - (m%2@%2)
(2gd)

In sketch (h) the plan form is also circumscribed by a pamd.lelogram
with sides inclined at the ~ch angle. The equations of these lines are

x. fly* (j3-m)B x = -13y* (p+m)B

from which it follows that their outermost intersection points are at

Y = & and the line connecting the intersection ~tits is x =my.
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The above results thus show that the Mach llnes circumscribing

19

the
plan form cau be used to determine the span of the trace of rl ~
the angle of inclination of the plane of I’l. The span of the plsn form
is, moreover, eqpal to the distance between the foci of the elUptic
trace.

From eqpations (18) and (19b) the drag of the wing and afterbcdy
relative to the drag of the K6rm6n ogive of eqysl length and base area “
is @Veil by

22 . E%’%@c=

~ = 4Bc(P%#) BC(&m=)
(30)

The results can be summrized as follows

Ilw?g%[(l+p=g2)2-@2p2g41

I

~ra1/2
1

%= l-p2g2+[(l+p2E2)2-@2~2g~]“2 [(l+p=&)2-4p2p.=&]1/2
(a)

.
4g “

m= E = 2b/1
Yr(l-plw)~2 ‘

2p@
tsn2*=—

1-.&

(32)

(33)

Sketch (i) is a plot of D/~ ,0

against angle of yaw for M =@
= 4/fi, 4, 8.

R
and IR The smallest i] — 4/lr
of these values of aspect ratio 8

/ ‘ 4
corresponds to a circular plan

—.-

form and obviously must be inde- ‘6 i ‘i .— 8

pendent of ~; the drag ratio is \
D/~ .@/2 and this is in agree- ~~ j \
ment with eqw.tion (21) for the 4 I
special case of the circular wing.
Several limiting forms of eqpa-

/[/- , ‘\
,.’ ‘.

tion (31) are of interest in show- 2
\. .,
‘x

ing the variation of drag. For .AA—.—- ‘\.-...
example, when w = O, the plan
form is unyawed, @ =4g/fl ala o0° 15 30” “ 45” m

Sketch (i)..

.

_.. _ .——__—— .— —. _~— .— ———— .--—–
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as given in eqution (21.). This relation furnishes the values of D/~
in sketch (i) at w = 90°. If p~ = 1 and ~ #
w =arctan~snd

O one has Al=m “--

This is the general drag relation for the yawed wing when aspect ratio
becomes infinite. It is to be noted that drag remains finite except when
the angle of yaw is equal to the free-stream Mach angle. In sketch (i)
the drag curve for inf~te aspect ratio
at~= 45°. Ifp~+land~+O SO

it fO~OWS that ~+0 andD/DK= 1.

Ducted”Body of Revolution

Sketch (j)

must therefore have a seity
that as~ect ratio remains finite,

of Given Volume

.
External wave drag of a quasi-cylindrical.

body of revolution is to be minimized, see
sketch (j). The radii of the body at the
nose and tail are assumed eqti (-J) and the
volume, V, of the body external to the refer-
ence cylinder is a known constant. The value
of the minimum drag and, as will be developed
in the neti section, the evaluation of the
tidy shape can be determined from the solu-
tion of eqpations (U.). The equations of the
fore and rear Mach envelopes are given
respectively by

x = ~(r-R) X=f=z - ~(r-R) = ~(2h+R-r)

where the constant h (=Z/2~) is introduced for convenience.
is a circle of radius r = R+h intheplane x=~h and
thus take the form

(34)

The curve T1
equations (lJ_)

— —. .. _—–– —
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.

V%-l=o for rSR+h

a 1.@2R
—fl=—
ar 2pJJm

atr=R

1

(35)

lf3 h + l@2

[

h2 + (R+h)2
Q=— — —

Pco% 2Pm% 2 1
at r =R+h

The solution of equtions (35) ;an be expressed in the form

Q = k= +~ln[r/(R+h)]

where, from the boundary conditions,

?@ l@2 h2+ (R+h)2

[
k==— — —

PUJJcnh + 2@m 2 1
Y

This result, together with eqgation (10), determines the function X
once the relationship between Aandp is established from the body
closure condition. If the known quantities X and f are substituted
into equation
seen to be

and the final

(%) ~d A set eq~ to zero, the desired relation is

?l=lqlp (36)

form for Q is

l@2
[ 1

@+ (R+h)’ + 132~n :Q=— —
2pJJm 2 R+h (37)

now be evaluated directly. A parallelism with the deriva-
tion following equation (13) can be matitained if equation (k) is used
and the potential is written

X = Q(Y,z) - F(y,z) (38)

where, from equation (10),

F=&f+
POJJm

IJ

2PJJm [
(2-f)2 + * p2(y’2+z2)

1
(39)

.— —_..
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Drag is given by

D=%
J

(Qy’+$lz’)ayaz - pm
J

(F&FzQz)@

s s

az+~J (Fy2+Fz2)dydz

s

If Green~s theorem is used in the first two integral-terms, along with the
boundary conditions, one has

D=%
J

(FY2+FZ2)dy

s

‘=4
c=

Equation (40) applies
ducted cylinder, equations

in general. For the particular problem of the
(34) ad (39) give

F==
[

r’

1
3h2 + (R+h-r)2 + ~ -

2pmum

and substitution in equation (40) yields

{

~ ~4W2h—— ~ (2R+h)[(R+h)2 - 3R21+ R4Zn ~
‘=8 ~ }

(41)

The multiplier p can now be eUminated between
A = O, and equation (41). The final result assumes a
form when written as follows

D v’

z = Z’C(u)

equation (12), with
relatively concise

(42a)

—
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where

c(u)
{ }

= ~ (Ww)I (1+2CJ)2- EU’] + 64cr4zn~ , u = ~ “ “
- 128

.

As in the case of the qymi-cylinder with given base srea, these
results cover the entire spectrum of fineness.ratios and yield, in their
limiting forms, the results of two-Umensional airfoil theory (biconvex
section) and slender-body theory. The latter case, which is the Sears-
Haack slender body (refs. 7 and 8), corresponds to u = O. Equation (42a)
then becomes

‘S-H L28? .—= —
% Yr24

(@b)

The above problem was considered previously by Heaslet and Fuller
(ref. 9) without recour”seto the present techniques but, rather, sf%er
expressing drag in terms of the source distribution that could be assumed
to generate tineexternal.shape of the body. In this approach it becomes
necessary to fhd first the source-distributionfunction, under minimizing
conditions, and to calculate drag snd volume subsequently. The details of
the calculations are thus less direct since the desired quantities are
expressed as integrsls tivolving the hyperbolic influence function of the”
supersonic source. In reference 9, the function C(a) of eqpation (42a)
appeared in the form (in a slightly modified notation)

1
1

c(u) =; [ (V-@) (1-V-+2U)1“2[II(h) E-all-4a) (K-E)]dq (43)

o

where K and E are elliptic
respectively, of modulus

.

k=

.

integrals of the first and second kind, “

[

11(1-11)

1

1/2

(~2a)(l-q+2u)

The immediate advsutage of eqm.tion (42a) is, of course, the natuxd.
advsmtage provided by any analytic representationwith its precise deter-
mination of ma@tude and rate “ofchange. From a disparate point of view,
the equivalence of the two results gives not only a new fundamental iden-
tity in the theory of elMptic functions but dso indicates a method
whereby further identities can be generated. From the standpoint of
direct ap@ication, however, the results of reference 9 ranah unmodified.
The calculations that were Used’to plot the variation of C(a) were found
to check to at least four significant figures with the present formula
and thus provided a satisfying confirmation of the numerica3 techniques
used in the original evaluation.

. . .——,
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Determination of Surface shale

In the calculation of midmum drag for the two families o! ducted
bodies, the value of the perturbation.potentialon the rear Mach envelope
becomes available in explicit form. It is therefore possible to seek the
source distribution function B(x) generating the disturbance field on
the rear surface; once B(x) is I.mown the body shaye can be calculated
as the final step in the analysis of the minhum drag Imlies. When the
source distribution is confined to a single tie segment, B(x) appears
as the solution of a single-inte~al equation. The origin is conven-
iently moved to the starting ~oint of the source distribution (x . -BR
of sketch (h)), so that B(0) “=O. For bodies of revolution, the
perturbation potential is lmown to be given by

.x-$r
B(xl)til

Since B(0) = O, differentiation

[ (X-XJ2 -@.-q1’2

and integration by parts

(44)

yields

+qx+ Cpr‘*f-prKs’2B’(xJ~’
where the prime denotes differentiation. The rear surface is

.

x=f=Z+2BR-~r

.

and on this surface

q=-13~+~

Hence, the integral equation

2m%‘t=’R-2’r[2+3%;2.J=’2B“
o

results where 2mr~ csn be asstied known. The transformations

(45)
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t = Z+2f3R-2Pr

G(x) = (7+29R-x)%’ (X)

H(t) =2m~(r)

lead to the Abel type equation

t

I G(xl)dxl
H(t) =

~ (t-x=)l/2

and its solution is known to be

t

J’H(~)dt=G(t) =:+

(-J(t-t=)=’2

i“
25

(46)

(47)

(48)

.

For the case of given base area (~ = O), the solution of equations (~)
was Q = const., hence, from equation (10)

x.-J- f + Const.
Pm%

and

M
Xr=—

PJJm

From equations (1.2)and (15) it follows that

so that one has

H(t) = ~ (Z+213R-t)

—..——— —— -—.-— .—— — -——-.- ——
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Wbstitution into equation (48) yields G(t)
the source distribution functions (with x as in

Bt(x) =
UJJ z-2x

~ [ (x+@R)(Z+~R-x)]1/2

NACA TN 3289

and from equations (46)
w

sketch (h))

B(x) =

(49)

J
For the case of given volume, equations (37), (38), =d (39) yield

!-@2r~. — [~ + 2(R+h)r - 3%]
2Pmum
.,

and the determination of the s,ourcedistribution function follows directly.
The final.form of this function’ is

e
.-

J3(x) = ‘mv
{ (Z-2X)[(x+PR)(Z+PR-X)]’/2- 2P2R2arc cos ~

}
(50)

2Z4C(U) --

The geometries of the two famiLLes of bodies were calculated and
shown in reference 9 and will not be repeated here. Comparable restits
to those of sketch (g) are, however, given in sketch (k). For the case
of given volume, the kg of the quasi-cylinders relative to that of the
Sears-Haack slender body is, from equations (@a) and (42b),

l.Or

.6 “

.4 -

.2 -

00 .5 t
LO L5 20 25 ?iO

J3RII

Sketch (k)

D x—=
128c(a)

(51)
‘S-H

Tor the case of given base area the
drag formula is reduced to the form
it would take in reference surface
theory. Under the assumption that
~ detiates slightly from Rl,

equations (19a) and (19b) yield

.=—
: l+14a

(52)

— _—-.
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.

CONCLUDING REMARKS

As @ven by equation (4a), drag is equal to the kinetic energy in a
two-dimensional flow field of unit thickness. Intuitively, the results
are remindfil of the similar expression for the vortex drag of a 13.fttig
wing in subsotic flow theory. In this latter Trefftz plane snalysis, the
optimum field is represented by a harmonic function in the entire cross-
flow plane external to the trace of the body whereas, in supersonic flow,
an additional,outer, bounding curve C= appears and affects the induced
velocities and the wave drag. The flow field associated with mimbnum @g
due to lift remains a harmonic field on the rear Mach envelope in super-
sonic flow (ref. 1) and, as shown in the present paper, the flow in the
notifting case is also a harmnic field with lmown additional effects.
Another point of similarity between the subsonic aud supersonic theories
also ap~ars: the boundary conditions dete~g the induced field are
given along curves that are uniquely determined by the wing or body but
the details of plan-fomn shape are not determined uniquely from the
bounding conditions themselves. !@s, in Prandtl’s snd hfLRIk’SVOtieX
theory, the flow in the Trefftz plane can be calculated but the chordwise
dimension of.the wing disappears entirely; all wings with equal span have
the ssme minimum drag smd the same spamwise distribution of loading for
minimum drag. It is obviously imgmssible to solve for details of the
chordwise load distribution in this case. ~ supersonic theory the condi-
tions for minimum drag are given on a surface displaced from the body and
a loss in lmowl,edgeas to plan-fomn shape is thus incurred. % the case
of the trapezoidal plan forms with @ven base’area, minimum drag md
induced velocities on the Mach envelope remain $ixed for the entire fsmily
of wings with subsonic leading and traihg edges. The solution of the
problem allowed for no storage of information about taper ratio and aspect
ratio once the wing was swept behind the Mach cone from the vertex. There
remaius the final question, however, as to whether a multiplicity of solu-
tions can be found. Suppose a planar wing e~sts and consider the shape
equal to the difference between the wing and the K- ogive. Rcom equa-
tion (14) the drag of the latter shape is zero. But for nonvsmishing
thickness, wave drag can never be zero. The logical contradiction implies
that the Kti o~ve is the only minimum drag configuration within the
family of trapezoidal plan forms with subsonic edges.

Following equation (12) it was remarked that the parameter A could
be identified with pressure in the combined flow field. An interesting
interpretation of the value of this parsmeter follows from the use of
equation (15). Eliminating drag between the two relations, one gets

.

.
(53)
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The left-hand expression is half of pressure coefficient in the combined
flow field. Equation (53) states that the value of -A/~ necessary to

calculate minimum drag is equal to the pressure coefficient predicted by
linearized unidimensional flow theory in a duct bounded internally and
externally by the characteristic
of sketch (b).

Ames Aeronautical Laboratory
National Adviso%y Conmi.ttee

Moffett IRLeld, Ca13.f.,

traces, that is, the curves C= and C2

for Aeronatiics
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